Version 1.0 | Technical

🌲 Silvanus Platform - Technical Specification

Detailed Component Specifications & Implementation Guide

Document Type Technical Specification
Version 1.0 Draft
Last Updated September 2025
Author Archwood Technical Team
Status Under Review
Classification Confidential

1. System Overview & Architecture

1.1 System Architecture

Component Architecture Pattern

The Silvanus platform follows a modular monolith architecture pattern, designed for eventual extraction into microservices.

silvanus/
├── apps/                      # Django applications
│   ├── authentication/        # Auth service
│   ├── users/                # User management
│   ├── workflows/            # Workflow engine
│   ├── api/                  # API endpoints
│   └── core/                 # Shared utilities
├── services/                 # Business logic layer
│   ├── ai_agent/            # Silvanus bot logic
│   ├── integrations/        # External integrations
│   └── notifications/       # Notification service
├── infrastructure/          # Infrastructure code
│   ├── docker/             # Docker configurations
│   ├── kubernetes/         # K8s manifests
│   └── terraform/          # IaC definitions
└── tests/                  # Test suites
    ├── unit/              # Unit tests
    ├── integration/       # Integration tests
    └── e2e/              # End-to-end tests
                    

1.2 Technology Stack Details

Layer Technology Version Purpose
Backend Framework Django 5.0+ Core application framework
API Framework Django REST Framework 3.14+ RESTful API implementation
Database PostgreSQL 15+ Primary data store
Cache Redis 7.0+ Session cache, message queue
Task Queue Celery 5.3+ Async task processing
Message Broker RabbitMQ 3.12+ Message queuing
Container Runtime Docker 24+ Containerization
Orchestration Kubernetes (AKS) 1.28+ Container orchestration
AI Platform Azure Foundry AI Latest AI/ML capabilities

2. Authentication Service Specification

2.1 Service Overview

Authentication Service

Purpose: Manage user authentication, authorization, and session management

Dependencies: Azure AD, Redis, PostgreSQL

Security Level: CRITICAL

2.2 API Endpoints

POST /api/v1/auth/login
Request Body:
{
    "email": "user@archwood.com",
    "password": "encrypted_password",
    "mfa_code": "123456"  // Optional
}

Response (200 OK):
{
    "access_token": "eyJ0eXAiOiJKV1QiLCJhbGc...",
    "refresh_token": "eyJ0eXAiOiJKV1QiLCJhbGc...",
    "expires_in": 3600,
    "user": {
        "id": "uuid",
        "email": "user@archwood.com",
        "full_name": "John Smith",
        "roles": ["admin", "user"]
    }
}
                    
POST /api/v1/auth/refresh
Request Headers:
Authorization: Bearer {refresh_token}

Response (200 OK):
{
    "access_token": "eyJ0eXAiOiJKV1QiLCJhbGc...",
    "expires_in": 3600
}
                    
POST /api/v1/auth/logout
Request Headers:
Authorization: Bearer {access_token}

Response (200 OK):
{
    "message": "Successfully logged out"
}
                    

2.3 JWT Token Structure

{
    "header": {
        "alg": "RS256",
        "typ": "JWT",
        "kid": "key_id"
    },
    "payload": {
        "sub": "user_uuid",
        "email": "user@archwood.com",
        "roles": ["admin", "user"],
        "departments": ["finance", "operations"],
        "iat": 1234567890,
        "exp": 1234571490,
        "iss": "silvanus.archwood.com",
        "aud": "silvanus-api"
    },
    "signature": "..."
}
                

2.4 Security Requirements

Authentication Security Measures

  • Password hashing using Argon2id HIGH
  • JWT tokens signed with RS256 HIGH
  • Token expiration: Access (1 hour), Refresh (7 days) HIGH
  • Rate limiting: 5 login attempts per 15 minutes HIGH
  • MFA support via TOTP (Time-based One-Time Password) MEDIUM
  • Session invalidation on password change HIGH
  • Secure cookie flags (HttpOnly, Secure, SameSite) HIGH

2.5 Database Schema

auth_sessions Table

id UUID Primary key
user_id UUID Foreign key to users table
token_hash VARCHAR(256) SHA256 hash of refresh token
ip_address INET Client IP address
user_agent TEXT Client user agent string
created_at TIMESTAMP Session creation time
expires_at TIMESTAMP Session expiration time
revoked BOOLEAN Whether session is revoked

3. User Management Service Specification

3.1 Service Overview

User Management Service

Purpose: Manage user profiles, roles, permissions, and organizational hierarchy

Dependencies: Authentication Service, PostgreSQL, Azure AD

APIs: 12 endpoints for CRUD operations and role management

3.2 Data Models

users Table

id UUID Primary key
email VARCHAR(255) Unique email address
full_name VARCHAR(255) User's full name
employee_id VARCHAR(50) Archwood employee ID
department_id UUID Foreign key to departments
manager_id UUID Self-referential foreign key
azure_ad_id VARCHAR(255) Azure AD object ID
is_active BOOLEAN Account active status
created_at TIMESTAMP Account creation date
updated_at TIMESTAMP Last update timestamp
metadata JSONB Additional user attributes

3.3 Role-Based Access Control (RBAC)

Permission Model

# Permission Structure
{
    "role": "finance_manager",
    "permissions": [
        "users.view",
        "users.edit_department",
        "reports.view_all",
        "reports.create",
        "reports.approve",
        "workflows.create",
        "workflows.approve_finance"
    ],
    "resource_filters": {
        "department": ["finance", "accounting"],
        "data_classification": ["public", "internal", "confidential"]
    },
    "delegation": {
        "can_delegate": true,
        "max_delegation_level": 2
    }
}
                    

3.4 API Specifications

GET /api/v1/users
Query Parameters:
- page (int): Page number (default: 1)
- page_size (int): Items per page (default: 50, max: 100)
- department (uuid): Filter by department
- is_active (bool): Filter by active status
- search (string): Search in name/email
- sort (string): Sort field (name, email, created_at)
- order (string): Sort order (asc, desc)

Response (200 OK):
{
    "count": 150,
    "next": "/api/v1/users?page=2",
    "previous": null,
    "results": [
        {
            "id": "uuid",
            "email": "user@archwood.com",
            "full_name": "John Smith",
            "department": {
                "id": "uuid",
                "name": "Finance"
            },
            "roles": ["finance_user"],
            "is_active": true,
            "created_at": "2026-01-15T10:00:00Z"
        }
    ]
}
                    

4. API Gateway Specification

4.1 Gateway Configuration

API Gateway (Azure API Management)

Purpose: Centralized API management, rate limiting, authentication, and routing

Components: Rate limiter, Request router, Response transformer, Cache layer

4.2 Rate Limiting Rules

User Type Requests/Hour Burst Limit Concurrent Connections
Standard User 1,000 50/minute 10
Power User 5,000 200/minute 25
Service Account 10,000 500/minute 50
Admin Unlimited 1000/minute 100

4.3 API Versioning Strategy

Version Management

  • URL versioning: /api/v1/, /api/v2/
  • Deprecation notice: 6 months minimum
  • Sunset period: 3 months after deprecation
  • Version compatibility matrix maintained
  • Breaking changes only in major versions

Response Headers

X-API-Version: 1.0
X-RateLimit-Limit: 1000
X-RateLimit-Remaining: 950
X-RateLimit-Reset: 1234567890
X-Request-ID: req_abc123xyz
X-Response-Time: 125ms
X-Deprecation-Notice: Version 1.0 will be deprecated on 2026-12-31
                    

5. Data Layer Specification

5.1 Database Architecture

PostgreSQL Configuration

  • Version: PostgreSQL 15+
  • Instance: Azure Database for PostgreSQL - Flexible Server
  • SKU: General Purpose, 8 vCores, 32 GB RAM
  • Storage: 500 GB SSD with auto-growth enabled
  • Backup: Point-in-time restore, 35-day retention
  • High Availability: Zone-redundant deployment
  • Read Replicas: 2 replicas for read scaling

5.2 Database Optimization

-- Key PostgreSQL Configuration Parameters
max_connections = 200
shared_buffers = 8GB
effective_cache_size = 24GB
maintenance_work_mem = 2GB
checkpoint_completion_target = 0.9
wal_buffers = 16MB
default_statistics_target = 100
random_page_cost = 1.1
effective_io_concurrency = 200
work_mem = 20MB
min_wal_size = 1GB
max_wal_size = 4GB

-- Connection Pooling (PgBouncer)
pool_mode = transaction
max_client_conn = 1000
default_pool_size = 25
reserve_pool_size = 5
reserve_pool_timeout = 3
server_lifetime = 3600
                

5.3 Caching Strategy

Redis Cache Configuration

Cache Layers

  • Session Cache: User sessions, JWT tokens (TTL: 1 hour)
  • API Response Cache: GET request responses (TTL: 5 minutes)
  • Database Query Cache: Expensive queries (TTL: 15 minutes)
  • Static Data Cache: Reference data, configurations (TTL: 24 hours)

Cache Invalidation Strategy

# Cache key patterns
user:session:{user_id}:{session_id}
api:response:{endpoint}:{params_hash}
db:query:{query_hash}
static:departments:all
static:roles:all

# Invalidation triggers
- On write operations: Invalidate related cache keys
- Time-based: TTL expiration
- Event-based: Listen to domain events
- Manual: Admin interface for cache purging
                        

6. AI Agent (Silvanus Bot) Specification

6.1 Azure Foundry AI Integration

Silvanus AI Agent

Purpose: Intelligent automation, natural language processing, and decision support

Platform: Azure Foundry AI with custom training

Capabilities: Intent recognition, workflow automation, predictive analytics

6.2 Agent Architecture

class SilvanusAgent:
    """
    Main AI Agent implementation for Silvanus platform
    """
    
    def __init__(self):
        self.llm = AzureFoundryAI(
            endpoint=AZURE_AI_ENDPOINT,
            api_key=AZURE_AI_KEY,
            model="gpt-4-custom-silvanus"
        )
        self.intent_classifier = IntentClassifier()
        self.action_executor = ActionExecutor()
        self.context_manager = ContextManager()
    
    async def process_request(self, user_input: str, user_context: dict) -> dict:
        """
        Process user request through AI pipeline
        """
        # 1. Extract intent and entities
        intent = await self.intent_classifier.classify(user_input)
        entities = await self.extract_entities(user_input)
        
        # 2. Retrieve context
        context = await self.context_manager.get_context(
            user_id=user_context['user_id'],
            conversation_id=user_context['conversation_id']
        )
        
        # 3. Generate response
        response = await self.llm.generate(
            prompt=self.build_prompt(intent, entities, context),
            temperature=0.7,
            max_tokens=500
        )
        
        # 4. Execute actions if needed
        if intent.requires_action:
            action_result = await self.action_executor.execute(
                action=intent.action,
                parameters=entities
            )
            response = self.merge_action_result(response, action_result)
        
        # 5. Update context
        await self.context_manager.update_context(
            user_id=user_context['user_id'],
            interaction={"input": user_input, "response": response}
        )
        
        return response
                

6.3 Intent Classification

Intent Category Example Queries Actions Confidence Threshold
User Management "Create user account", "Reset password" CRUD operations on users 0.85
Information Retrieval "Show me reports", "What's the status" Query and return data 0.80
Workflow Automation "Approve request", "Start process" Trigger workflow actions 0.90
Analytics "Analyze trends", "Predict outcomes" Run analytics queries 0.85
Help & Support "How do I", "Help with" Provide documentation 0.75

6.4 Training Data Requirements

⚠️ Training Data Preparation

Before deployment, the Silvanus agent requires:

  • Minimum 10,000 annotated conversation examples
  • Company-specific terminology and acronyms dictionary
  • Business process documentation for workflow understanding
  • Historical ticket data for pattern learning
  • Role-based response templates

7. Workflow Engine Specification

7.1 Workflow Definition Language

{
    "workflow_id": "expense_approval",
    "name": "Expense Approval Process",
    "version": "1.0",
    "triggers": [
        {
            "type": "api",
            "endpoint": "/api/v1/workflows/expense/submit"
        }
    ],
    "stages": [
        {
            "id": "validation",
            "name": "Validate Expense",
            "type": "automated",
            "actions": [
                {
                    "type": "validate",
                    "rules": [
                        {"field": "amount", "operator": "<=", "value": 10000},
                        {"field": "receipt", "operator": "exists"}
                    ]
                }
            ],
            "on_success": "manager_approval",
            "on_failure": "rejection"
        },
        {
            "id": "manager_approval",
            "name": "Manager Approval",
            "type": "human",
            "assignee": "${submitter.manager}",
            "timeout": "48h",
            "actions": [
                {"type": "approve", "next": "finance_review"},
                {"type": "reject", "next": "rejection"},
                {"type": "request_info", "next": "validation"}
            ]
        },
        {
            "id": "finance_review",
            "name": "Finance Review",
            "type": "human",
            "assignee": "role:finance_team",
            "condition": "${amount} > 1000",
            "timeout": "72h",
            "actions": [
                {"type": "approve", "next": "payment"},
                {"type": "reject", "next": "rejection"}
            ]
        },
        {
            "id": "payment",
            "name": "Process Payment",
            "type": "automated",
            "actions": [
                {
                    "type": "integration",
                    "service": "payment_service",
                    "method": "process_expense"
                }
            ],
            "on_success": "completed",
            "on_failure": "error"
        }
    ]
}
                

7.2 Workflow State Machine

State Transitions

States:
- DRAFT: Initial state, workflow being created
- PENDING: Waiting for action
- IN_PROGRESS: Currently being processed
- WAITING_APPROVAL: Awaiting human decision
- APPROVED: Approved by required parties
- REJECTED: Rejected at any stage
- COMPLETED: Successfully completed
- ERROR: Error occurred during processing
- CANCELLED: Manually cancelled
- TIMEOUT: Exceeded time limit

Allowed Transitions:
DRAFT → PENDING
PENDING → IN_PROGRESS
IN_PROGRESS → WAITING_APPROVAL | COMPLETED | ERROR
WAITING_APPROVAL → APPROVED | REJECTED | TIMEOUT
APPROVED → IN_PROGRESS | COMPLETED
REJECTED → COMPLETED
* → CANCELLED (manual intervention)
                    

8. Monitoring & Logging Specification

8.1 Monitoring Stack

Observability Platform

  • Metrics: Azure Monitor with custom metrics
  • Logging: Azure Log Analytics workspace
  • Tracing: Application Insights with distributed tracing
  • Alerting: Azure Alerts with PagerDuty integration
  • Dashboards: Grafana for visualization

8.2 Key Performance Indicators

API Response Time
< 200ms
Database Query Time
< 50ms
Error Rate
< 0.1%
Availability
99.95%
Cache Hit Rate
> 80%

8.3 Logging Standards

import structlog

logger = structlog.get_logger()

# Standard log format
{
    "timestamp": "2026-01-15T10:30:45.123Z",
    "level": "INFO",
    "service": "user_service",
    "trace_id": "abc123xyz",
    "span_id": "def456",
    "user_id": "uuid",
    "method": "POST",
    "path": "/api/v1/users",
    "status_code": 201,
    "duration_ms": 125,
    "message": "User created successfully",
    "metadata": {
        "department": "finance",
        "roles": ["user"]
    }
}

# Log levels and usage
- DEBUG: Detailed diagnostic information
- INFO: General informational messages
- WARNING: Warning messages for potential issues
- ERROR: Error events but application continues
- CRITICAL: Critical problems causing shutdown
                

9. Security Implementation

9.1 Security Layers

Defense in Depth Strategy

  1. Network Security:
    • Azure Firewall with application rules
    • Network Security Groups (NSGs) per subnet
    • Private endpoints for database access
    • DDoS Protection Standard
  2. Application Security:
    • OWASP Top 10 mitigation
    • Input validation and sanitization
    • Output encoding
    • SQL injection prevention via ORM
  3. Data Security:
    • Encryption at rest (AES-256)
    • Encryption in transit (TLS 1.3)
    • Key management via Azure Key Vault
    • Data masking for PII

9.2 Security Headers

# Security headers configuration
Content-Security-Policy: default-src 'self'; script-src 'self' 'unsafe-inline' https://cdn.azure.com; style-src 'self' 'unsafe-inline';
X-Content-Type-Options: nosniff
X-Frame-Options: DENY
X-XSS-Protection: 1; mode=block
Strict-Transport-Security: max-age=31536000; includeSubDomains; preload
Referrer-Policy: strict-origin-when-cross-origin
Permissions-Policy: geolocation=(), microphone=(), camera=()
                

10. Testing Strategy

10.1 Test Coverage Requirements

Test Type Coverage Target Tools Frequency
Unit Tests > 80% pytest, coverage.py On every commit
Integration Tests > 70% pytest, testcontainers On every PR
E2E Tests Critical paths Selenium, Cypress Daily
Performance Tests All endpoints Locust, JMeter Weekly
Security Tests OWASP Top 10 OWASP ZAP, Snyk Sprint end

10.2 Test Scenarios

Authentication Test Suite

def test_successful_login():
    """Test successful user login with valid credentials"""
    response = client.post('/api/v1/auth/login', json={
        'email': 'test@archwood.com',
        'password': 'ValidPassword123!'
    })
    assert response.status_code == 200
    assert 'access_token' in response.json()
    assert 'refresh_token' in response.json()

def test_failed_login_invalid_password():
    """Test login failure with invalid password"""
    response = client.post('/api/v1/auth/login', json={
        'email': 'test@archwood.com',
        'password': 'WrongPassword'
    })
    assert response.status_code == 401
    assert response.json()['error'] == 'Invalid credentials'

def test_rate_limiting():
    """Test rate limiting after multiple failed attempts"""
    for i in range(6):
        response = client.post('/api/v1/auth/login', json={
            'email': 'test@archwood.com',
            'password': 'WrongPassword'
        })
    assert response.status_code == 429
    assert 'Too many attempts' in response.json()['error']
                

11. Deployment Configuration

11.1 Kubernetes Deployment

apiVersion: apps/v1
kind: Deployment
metadata:
  name: silvanus-api
  namespace: production
spec:
  replicas: 3
  strategy:
    type: RollingUpdate
    rollingUpdate:
      maxSurge: 1
      maxUnavailable: 0
  selector:
    matchLabels:
      app: silvanus-api
  template:
    metadata:
      labels:
        app: silvanus-api
        version: v1.0.0
    spec:
      containers:
      - name: silvanus-api
        image: archwood.azurecr.io/silvanus-api:1.0.0
        ports:
        - containerPort: 8000
        env:
        - name: DJANGO_SETTINGS_MODULE
          value: "config.settings.production"
        - name: DATABASE_URL
          valueFrom:
            secretKeyRef:
              name: silvanus-secrets
              key: database-url
        resources:
          requests:
            memory: "512Mi"
            cpu: "500m"
          limits:
            memory: "1Gi"
            cpu: "1000m"
        livenessProbe:
          httpGet:
            path: /health
            port: 8000
          initialDelaySeconds: 30
          periodSeconds: 10
        readinessProbe:
          httpGet:
            path: /ready
            port: 8000
          initialDelaySeconds: 5
          periodSeconds: 5
---
apiVersion: v1
kind: Service
metadata:
  name: silvanus-api-service
  namespace: production
spec:
  selector:
    app: silvanus-api
  ports:
  - protocol: TCP
    port: 80
    targetPort: 8000
  type: LoadBalancer
                

11.2 CI/CD Pipeline

Deployment Stages

  1. Build Stage:
    • Run unit tests
    • Code quality checks (SonarQube)
    • Security scanning (Snyk)
    • Build Docker image
  2. Test Stage:
    • Deploy to test environment
    • Run integration tests
    • Run E2E tests
    • Performance baseline tests
  3. Staging Stage:
    • Deploy to staging
    • Smoke tests
    • User acceptance testing
    • Security penetration testing
  4. Production Stage:
    • Blue-green deployment
    • Canary release (10% → 50% → 100%)
    • Health checks
    • Rollback capability

12. Appendices

Appendix A: Error Codes

Error Code HTTP Status Description User Message
AUTH001 401 Invalid credentials The email or password you entered is incorrect
AUTH002 401 Token expired Your session has expired. Please log in again
AUTH003 403 Insufficient permissions You don't have permission to perform this action
VAL001 400 Validation error Please check your input and try again
SYS001 500 Internal server error Something went wrong. Please try again later
RATE001 429 Rate limit exceeded Too many requests. Please wait before trying again

Appendix B: Database Indexes

-- Performance-critical indexes
CREATE INDEX idx_users_email ON users(email);
CREATE INDEX idx_users_department ON users(department_id);
CREATE INDEX idx_users_manager ON users(manager_id);
CREATE INDEX idx_users_active ON users(is_active) WHERE is_active = true;

CREATE INDEX idx_sessions_user ON auth_sessions(user_id);
CREATE INDEX idx_sessions_token ON auth_sessions(token_hash);
CREATE INDEX idx_sessions_expires ON auth_sessions(expires_at) WHERE revoked = false;

CREATE INDEX idx_audit_user_time ON audit_logs(user_id, created_at DESC);
CREATE INDEX idx_audit_resource ON audit_logs(resource_type, resource_id);

CREATE INDEX idx_workflows_status ON workflows(status) WHERE status IN ('PENDING', 'IN_PROGRESS');
CREATE INDEX idx_workflows_assignee ON workflows(assignee_id, status);

-- Composite indexes for common queries
CREATE INDEX idx_users_dept_active ON users(department_id, is_active);
CREATE INDEX idx_audit_user_action_time ON audit_logs(user_id, action, created_at DESC);
                

Appendix C: Environment Variables

# Required Environment Variables

# Django Settings
DJANGO_SETTINGS_MODULE=config.settings.production
SECRET_KEY=
DEBUG=False
ALLOWED_HOSTS=silvanus.archwood.com,*.archwood.internal

# Database
DATABASE_URL=postgresql://user:password@host:5432/silvanus
DATABASE_POOL_SIZE=20
DATABASE_MAX_OVERFLOW=5

# Redis
REDIS_URL=redis://:password@redis-host:6379/0
REDIS_CACHE_URL=redis://:password@redis-host:6379/1

# Azure Services
AZURE_STORAGE_ACCOUNT=archwoodstorage
AZURE_STORAGE_KEY=
AZURE_KEY_VAULT_URL=https://archwood-kv.vault.azure.net/
AZURE_AI_ENDPOINT=https://archwood.cognitiveservices.azure.com/
AZURE_AI_KEY=

# Authentication
JWT_SECRET_KEY=
JWT_ALGORITHM=RS256
JWT_ACCESS_TOKEN_LIFETIME=3600
JWT_REFRESH_TOKEN_LIFETIME=604800

# Monitoring
APPLICATION_INSIGHTS_KEY=
LOG_LEVEL=INFO

# Email
EMAIL_HOST=smtp.office365.com
EMAIL_PORT=587
EMAIL_USE_TLS=True
EMAIL_HOST_USER=silvanus@archwood.com
EMAIL_HOST_PASSWORD=

# External APIs
SLACK_WEBHOOK_URL=https://hooks.slack.com/services/xxx
TEAMS_WEBHOOK_URL=https://outlook.office.com/webhook/xxx

# Feature Flags
ENABLE_MFA=True
ENABLE_AI_AGENT=True
ENABLE_ADVANCED_ANALYTICS=False
                

Appendix D: API Response Examples

Successful Response

HTTP/1.1 200 OK
Content-Type: application/json
X-Request-ID: req_abc123xyz

{
    "status": "success",
    "data": {
        "id": "550e8400-e29b-41d4-a716-446655440000",
        "email": "john.smith@archwood.com",
        "full_name": "John Smith",
        "department": {
            "id": "660f8400-e29b-41d4-a716-446655440001",
            "name": "Finance"
        },
        "roles": ["finance_user", "report_viewer"],
        "permissions": [
            "users.view",
            "reports.view",
            "reports.export"
        ],
        "created_at": "2026-01-15T10:00:00Z",
        "updated_at": "2026-01-15T14:30:00Z"
    },
    "meta": {
        "timestamp": "2026-01-15T14:30:00Z",
        "version": "1.0"
    }
}
                    

Error Response

HTTP/1.1 400 Bad Request
Content-Type: application/json
X-Request-ID: req_def456abc

{
    "status": "error",
    "error": {
        "code": "VAL001",
        "message": "Validation failed",
        "details": [
            {
                "field": "email",
                "message": "Email address is not valid"
            },
            {
                "field": "department_id",
                "message": "Department does not exist"
            }
        ]
    },
    "meta": {
        "timestamp": "2026-01-15T14:31:00Z",
        "request_id": "req_def456abc",
        "documentation": "https://docs.silvanus.archwood.com/errors/VAL001"
    }
}
                    

Paginated Response

HTTP/1.1 200 OK
Content-Type: application/json
X-Total-Count: 150
Link: </api/v1/users?page=2>; rel="next", </api/v1/users?page=5>; rel="last"

{
    "status": "success",
    "data": {
        "items": [...],
        "pagination": {
            "page": 1,
            "page_size": 50,
            "total_pages": 5,
            "total_items": 150,
            "has_next": true,
            "has_previous": false
        }
    },
    "meta": {
        "timestamp": "2026-01-15T14:32:00Z"
    }
}
                    

Appendix E: Performance Benchmarks

Operation Target P50 P95 P99
User Login < 500ms 200ms 450ms 800ms
Get User List (50 items) < 200ms 80ms 150ms 250ms
Create User < 300ms 120ms 250ms 400ms
Workflow Execution < 1000ms 400ms 800ms 1200ms
AI Agent Response < 2000ms 800ms 1500ms 2500ms
Report Generation < 5000ms 2000ms 4000ms 6000ms

Appendix F: Disaster Recovery Procedures

Recovery Procedures by Component

1. Database Recovery
# Point-in-time recovery procedure
1. Stop application servers
   kubectl scale deployment silvanus-api --replicas=0

2. Create new database from backup
   az postgres flexible-server restore \
     --resource-group silvanus-rg \
     --name silvanus-db-restored \
     --source-server silvanus-db \
     --restore-time "2026-01-15T10:00:00Z"

3. Update connection strings
   kubectl set env deployment/silvanus-api \
     DATABASE_URL=postgresql://...@silvanus-db-restored...

4. Verify data integrity
   python manage.py dbshell
   SELECT COUNT(*) FROM users;
   SELECT MAX(created_at) FROM audit_logs;

5. Restart application
   kubectl scale deployment silvanus-api --replicas=3

6. Run health checks
   curl https://silvanus.archwood.com/health
                    
2. Application Recovery
# Rollback deployment procedure
1. Get deployment history
   kubectl rollout history deployment/silvanus-api

2. Check previous revision
   kubectl rollout history deployment/silvanus-api --revision=2

3. Rollback to previous version
   kubectl rollout undo deployment/silvanus-api --to-revision=2

4. Monitor rollback status
   kubectl rollout status deployment/silvanus-api

5. Verify application health
   kubectl get pods -l app=silvanus-api
   kubectl logs -l app=silvanus-api --tail=100
                    

Appendix G: Monitoring Queries

// Azure Log Analytics KQL Queries

// API Response Time Analysis
requests
| where timestamp > ago(1h)
| where name startswith "POST /api/v1/"
| summarize 
    avg_duration = avg(duration),
    p95_duration = percentile(duration, 95),
    p99_duration = percentile(duration, 99),
    count = count()
    by bin(timestamp, 5m), name
| render timechart

// Error Rate by Endpoint
requests
| where timestamp > ago(24h)
| where resultCode >= 400
| summarize 
    error_count = count(),
    error_rate = count() * 100.0 / toscalar(requests | where timestamp > ago(24h) | count())
    by resultCode, name
| order by error_count desc

// User Activity Heatmap
customEvents
| where timestamp > ago(7d)
| where name == "UserAction"
| extend hour = hourofday(timestamp)
| extend day = dayofweek(timestamp)
| summarize actions = count() by day, hour
| render heatmap

// Database Query Performance
dependencies
| where timestamp > ago(1h)
| where type == "SQL"
| extend query_type = extract(@"^(\w+)", 1, data)
| summarize 
    avg_duration = avg(duration),
    max_duration = max(duration),
    count = count()
    by query_type
| order by avg_duration desc

// AI Agent Performance
customMetrics
| where timestamp > ago(1h)
| where name == "SilvanusAgent.ResponseTime"
| summarize 
    avg_response = avg(value),
    max_response = max(value),
    requests = count()
    by bin(timestamp, 5m)
| render timechart
                

Appendix H: Security Checklist

Pre-Deployment Security Checklist

Category Item Status Priority
Authentication Strong password policy enforced HIGH
MFA enabled for admin accounts HIGH
JWT token rotation implemented HIGH
Session timeout configured MEDIUM
Account lockout after failed attempts HIGH
Data Protection Database encryption at rest HIGH
TLS 1.3 for all connections HIGH
PII data masking implemented HIGH
Secrets stored in Key Vault HIGH
Network Security Firewall rules configured HIGH
Private endpoints enabled MEDIUM
DDoS protection enabled MEDIUM
Network segmentation implemented HIGH
Monitoring Security alerts configured HIGH
Audit logging enabled HIGH
SIEM integration completed MEDIUM

Appendix I: Capacity Planning

Resource Requirements by User Load

Users API Pods Worker Pods DB vCores DB RAM (GB) Redis RAM (GB)
0-500 3 2 4 16 4
500-1000 5 3 8 32 8
1000-2500 10 5 16 64 16
2500-5000 20 10 32 128 32
5000+ 30+ 15+ 64 256 64

Storage Growth Projections

# Storage calculation formula
Daily Data Growth = (Users × Actions/Day × Avg_Record_Size) + Audit_Logs + Files

# Assumptions:
- Average user: 50 actions/day
- Average record size: 2 KB
- Audit log per action: 1 KB
- Average file upload: 5 MB/user/month

# Monthly storage growth:
500 users:   ~15 GB/month
1000 users:  ~30 GB/month
2500 users:  ~75 GB/month
5000 users:  ~150 GB/month

# Recommended storage allocation:
Initial: 500 GB
Year 1: 1 TB
Year 2: 2 TB
                    

Appendix J: Glossary of Technical Terms

Term Definition
API Gateway Central entry point for all API requests, handling routing, authentication, and rate limiting
Blue-Green Deployment Deployment strategy using two identical production environments for zero-downtime updates
Canary Release Gradual rollout strategy where new version is deployed to a subset of users first
CORS Cross-Origin Resource Sharing - mechanism allowing web apps to access resources from other domains
JWT JSON Web Token - compact, URL-safe means of representing claims between parties
Microservices Architectural pattern where application is built as collection of small, independent services
ORM Object-Relational Mapping - technique for converting data between incompatible systems
RBAC Role-Based Access Control - security paradigm for restricting system access based on roles
Redis In-memory data structure store used as cache, message broker, and session store
REST Representational State Transfer - architectural style for designing networked applications
Webhook HTTP callback that occurs when something happens; a simple event-notification mechanism

Document Control

Version Date Author Changes
0.1 September 2025 Technical Team Initial draft
1.0 TBD TBD Final review and approval

Classification: Archwood Internal - Confidential

Distribution: Development Team, Technical Architects, Security Team

Review Cycle: Quarterly or upon major changes

Owner: Silvanus Technical Lead

Contact: silvanus-tech@archwood.com