📑 Table of Contents
- System Overview & Architecture
- Authentication Service Specification
- User Management Service Specification
- API Gateway Specification
- Data Layer Specification
- AI Agent (Silvanus Bot) Specification
- Workflow Engine Specification
- Monitoring & Logging Specification
- Security Implementation
- Testing Strategy
- Deployment Configuration
- Appendices
1. System Overview & Architecture
1.1 System Architecture
Component Architecture Pattern
The Silvanus platform follows a modular monolith architecture pattern, designed for eventual extraction into microservices.
silvanus/
├── apps/ # Django applications
│ ├── authentication/ # Auth service
│ ├── users/ # User management
│ ├── workflows/ # Workflow engine
│ ├── api/ # API endpoints
│ └── core/ # Shared utilities
├── services/ # Business logic layer
│ ├── ai_agent/ # Silvanus bot logic
│ ├── integrations/ # External integrations
│ └── notifications/ # Notification service
├── infrastructure/ # Infrastructure code
│ ├── docker/ # Docker configurations
│ ├── kubernetes/ # K8s manifests
│ └── terraform/ # IaC definitions
└── tests/ # Test suites
├── unit/ # Unit tests
├── integration/ # Integration tests
└── e2e/ # End-to-end tests
1.2 Technology Stack Details
| Layer | Technology | Version | Purpose |
|---|---|---|---|
| Backend Framework | Django | 5.0+ | Core application framework |
| API Framework | Django REST Framework | 3.14+ | RESTful API implementation |
| Database | PostgreSQL | 15+ | Primary data store |
| Cache | Redis | 7.0+ | Session cache, message queue |
| Task Queue | Celery | 5.3+ | Async task processing |
| Message Broker | RabbitMQ | 3.12+ | Message queuing |
| Container Runtime | Docker | 24+ | Containerization |
| Orchestration | Kubernetes (AKS) | 1.28+ | Container orchestration |
| AI Platform | Azure Foundry AI | Latest | AI/ML capabilities |
2. Authentication Service Specification
2.1 Service Overview
Authentication Service
Purpose: Manage user authentication, authorization, and session management
Dependencies: Azure AD, Redis, PostgreSQL
Security Level: CRITICAL
2.2 API Endpoints
Request Body:
{
"email": "user@archwood.com",
"password": "encrypted_password",
"mfa_code": "123456" // Optional
}
Response (200 OK):
{
"access_token": "eyJ0eXAiOiJKV1QiLCJhbGc...",
"refresh_token": "eyJ0eXAiOiJKV1QiLCJhbGc...",
"expires_in": 3600,
"user": {
"id": "uuid",
"email": "user@archwood.com",
"full_name": "John Smith",
"roles": ["admin", "user"]
}
}
Request Headers:
Authorization: Bearer {refresh_token}
Response (200 OK):
{
"access_token": "eyJ0eXAiOiJKV1QiLCJhbGc...",
"expires_in": 3600
}
Request Headers:
Authorization: Bearer {access_token}
Response (200 OK):
{
"message": "Successfully logged out"
}
2.3 JWT Token Structure
{
"header": {
"alg": "RS256",
"typ": "JWT",
"kid": "key_id"
},
"payload": {
"sub": "user_uuid",
"email": "user@archwood.com",
"roles": ["admin", "user"],
"departments": ["finance", "operations"],
"iat": 1234567890,
"exp": 1234571490,
"iss": "silvanus.archwood.com",
"aud": "silvanus-api"
},
"signature": "..."
}
2.4 Security Requirements
Authentication Security Measures
- Password hashing using Argon2id HIGH
- JWT tokens signed with RS256 HIGH
- Token expiration: Access (1 hour), Refresh (7 days) HIGH
- Rate limiting: 5 login attempts per 15 minutes HIGH
- MFA support via TOTP (Time-based One-Time Password) MEDIUM
- Session invalidation on password change HIGH
- Secure cookie flags (HttpOnly, Secure, SameSite) HIGH
2.5 Database Schema
auth_sessions Table
3. User Management Service Specification
3.1 Service Overview
User Management Service
Purpose: Manage user profiles, roles, permissions, and organizational hierarchy
Dependencies: Authentication Service, PostgreSQL, Azure AD
APIs: 12 endpoints for CRUD operations and role management
3.2 Data Models
users Table
3.3 Role-Based Access Control (RBAC)
Permission Model
# Permission Structure
{
"role": "finance_manager",
"permissions": [
"users.view",
"users.edit_department",
"reports.view_all",
"reports.create",
"reports.approve",
"workflows.create",
"workflows.approve_finance"
],
"resource_filters": {
"department": ["finance", "accounting"],
"data_classification": ["public", "internal", "confidential"]
},
"delegation": {
"can_delegate": true,
"max_delegation_level": 2
}
}
3.4 API Specifications
Query Parameters:
- page (int): Page number (default: 1)
- page_size (int): Items per page (default: 50, max: 100)
- department (uuid): Filter by department
- is_active (bool): Filter by active status
- search (string): Search in name/email
- sort (string): Sort field (name, email, created_at)
- order (string): Sort order (asc, desc)
Response (200 OK):
{
"count": 150,
"next": "/api/v1/users?page=2",
"previous": null,
"results": [
{
"id": "uuid",
"email": "user@archwood.com",
"full_name": "John Smith",
"department": {
"id": "uuid",
"name": "Finance"
},
"roles": ["finance_user"],
"is_active": true,
"created_at": "2026-01-15T10:00:00Z"
}
]
}
4. API Gateway Specification
4.1 Gateway Configuration
API Gateway (Azure API Management)
Purpose: Centralized API management, rate limiting, authentication, and routing
Components: Rate limiter, Request router, Response transformer, Cache layer
4.2 Rate Limiting Rules
| User Type | Requests/Hour | Burst Limit | Concurrent Connections |
|---|---|---|---|
| Standard User | 1,000 | 50/minute | 10 |
| Power User | 5,000 | 200/minute | 25 |
| Service Account | 10,000 | 500/minute | 50 |
| Admin | Unlimited | 1000/minute | 100 |
4.3 API Versioning Strategy
Version Management
- URL versioning:
/api/v1/,/api/v2/ - Deprecation notice: 6 months minimum
- Sunset period: 3 months after deprecation
- Version compatibility matrix maintained
- Breaking changes only in major versions
Response Headers
X-API-Version: 1.0
X-RateLimit-Limit: 1000
X-RateLimit-Remaining: 950
X-RateLimit-Reset: 1234567890
X-Request-ID: req_abc123xyz
X-Response-Time: 125ms
X-Deprecation-Notice: Version 1.0 will be deprecated on 2026-12-31
5. Data Layer Specification
5.1 Database Architecture
PostgreSQL Configuration
- Version: PostgreSQL 15+
- Instance: Azure Database for PostgreSQL - Flexible Server
- SKU: General Purpose, 8 vCores, 32 GB RAM
- Storage: 500 GB SSD with auto-growth enabled
- Backup: Point-in-time restore, 35-day retention
- High Availability: Zone-redundant deployment
- Read Replicas: 2 replicas for read scaling
5.2 Database Optimization
-- Key PostgreSQL Configuration Parameters
max_connections = 200
shared_buffers = 8GB
effective_cache_size = 24GB
maintenance_work_mem = 2GB
checkpoint_completion_target = 0.9
wal_buffers = 16MB
default_statistics_target = 100
random_page_cost = 1.1
effective_io_concurrency = 200
work_mem = 20MB
min_wal_size = 1GB
max_wal_size = 4GB
-- Connection Pooling (PgBouncer)
pool_mode = transaction
max_client_conn = 1000
default_pool_size = 25
reserve_pool_size = 5
reserve_pool_timeout = 3
server_lifetime = 3600
5.3 Caching Strategy
Redis Cache Configuration
Cache Layers
- Session Cache: User sessions, JWT tokens (TTL: 1 hour)
- API Response Cache: GET request responses (TTL: 5 minutes)
- Database Query Cache: Expensive queries (TTL: 15 minutes)
- Static Data Cache: Reference data, configurations (TTL: 24 hours)
Cache Invalidation Strategy
# Cache key patterns
user:session:{user_id}:{session_id}
api:response:{endpoint}:{params_hash}
db:query:{query_hash}
static:departments:all
static:roles:all
# Invalidation triggers
- On write operations: Invalidate related cache keys
- Time-based: TTL expiration
- Event-based: Listen to domain events
- Manual: Admin interface for cache purging
6. AI Agent (Silvanus Bot) Specification
6.1 Azure Foundry AI Integration
Silvanus AI Agent
Purpose: Intelligent automation, natural language processing, and decision support
Platform: Azure Foundry AI with custom training
Capabilities: Intent recognition, workflow automation, predictive analytics
6.2 Agent Architecture
class SilvanusAgent:
"""
Main AI Agent implementation for Silvanus platform
"""
def __init__(self):
self.llm = AzureFoundryAI(
endpoint=AZURE_AI_ENDPOINT,
api_key=AZURE_AI_KEY,
model="gpt-4-custom-silvanus"
)
self.intent_classifier = IntentClassifier()
self.action_executor = ActionExecutor()
self.context_manager = ContextManager()
async def process_request(self, user_input: str, user_context: dict) -> dict:
"""
Process user request through AI pipeline
"""
# 1. Extract intent and entities
intent = await self.intent_classifier.classify(user_input)
entities = await self.extract_entities(user_input)
# 2. Retrieve context
context = await self.context_manager.get_context(
user_id=user_context['user_id'],
conversation_id=user_context['conversation_id']
)
# 3. Generate response
response = await self.llm.generate(
prompt=self.build_prompt(intent, entities, context),
temperature=0.7,
max_tokens=500
)
# 4. Execute actions if needed
if intent.requires_action:
action_result = await self.action_executor.execute(
action=intent.action,
parameters=entities
)
response = self.merge_action_result(response, action_result)
# 5. Update context
await self.context_manager.update_context(
user_id=user_context['user_id'],
interaction={"input": user_input, "response": response}
)
return response
6.3 Intent Classification
| Intent Category | Example Queries | Actions | Confidence Threshold |
|---|---|---|---|
| User Management | "Create user account", "Reset password" | CRUD operations on users | 0.85 |
| Information Retrieval | "Show me reports", "What's the status" | Query and return data | 0.80 |
| Workflow Automation | "Approve request", "Start process" | Trigger workflow actions | 0.90 |
| Analytics | "Analyze trends", "Predict outcomes" | Run analytics queries | 0.85 |
| Help & Support | "How do I", "Help with" | Provide documentation | 0.75 |
6.4 Training Data Requirements
⚠️ Training Data Preparation
Before deployment, the Silvanus agent requires:
- Minimum 10,000 annotated conversation examples
- Company-specific terminology and acronyms dictionary
- Business process documentation for workflow understanding
- Historical ticket data for pattern learning
- Role-based response templates
7. Workflow Engine Specification
7.1 Workflow Definition Language
{
"workflow_id": "expense_approval",
"name": "Expense Approval Process",
"version": "1.0",
"triggers": [
{
"type": "api",
"endpoint": "/api/v1/workflows/expense/submit"
}
],
"stages": [
{
"id": "validation",
"name": "Validate Expense",
"type": "automated",
"actions": [
{
"type": "validate",
"rules": [
{"field": "amount", "operator": "<=", "value": 10000},
{"field": "receipt", "operator": "exists"}
]
}
],
"on_success": "manager_approval",
"on_failure": "rejection"
},
{
"id": "manager_approval",
"name": "Manager Approval",
"type": "human",
"assignee": "${submitter.manager}",
"timeout": "48h",
"actions": [
{"type": "approve", "next": "finance_review"},
{"type": "reject", "next": "rejection"},
{"type": "request_info", "next": "validation"}
]
},
{
"id": "finance_review",
"name": "Finance Review",
"type": "human",
"assignee": "role:finance_team",
"condition": "${amount} > 1000",
"timeout": "72h",
"actions": [
{"type": "approve", "next": "payment"},
{"type": "reject", "next": "rejection"}
]
},
{
"id": "payment",
"name": "Process Payment",
"type": "automated",
"actions": [
{
"type": "integration",
"service": "payment_service",
"method": "process_expense"
}
],
"on_success": "completed",
"on_failure": "error"
}
]
}
7.2 Workflow State Machine
State Transitions
States:
- DRAFT: Initial state, workflow being created
- PENDING: Waiting for action
- IN_PROGRESS: Currently being processed
- WAITING_APPROVAL: Awaiting human decision
- APPROVED: Approved by required parties
- REJECTED: Rejected at any stage
- COMPLETED: Successfully completed
- ERROR: Error occurred during processing
- CANCELLED: Manually cancelled
- TIMEOUT: Exceeded time limit
Allowed Transitions:
DRAFT → PENDING
PENDING → IN_PROGRESS
IN_PROGRESS → WAITING_APPROVAL | COMPLETED | ERROR
WAITING_APPROVAL → APPROVED | REJECTED | TIMEOUT
APPROVED → IN_PROGRESS | COMPLETED
REJECTED → COMPLETED
* → CANCELLED (manual intervention)
8. Monitoring & Logging Specification
8.1 Monitoring Stack
Observability Platform
- Metrics: Azure Monitor with custom metrics
- Logging: Azure Log Analytics workspace
- Tracing: Application Insights with distributed tracing
- Alerting: Azure Alerts with PagerDuty integration
- Dashboards: Grafana for visualization
8.2 Key Performance Indicators
8.3 Logging Standards
import structlog
logger = structlog.get_logger()
# Standard log format
{
"timestamp": "2026-01-15T10:30:45.123Z",
"level": "INFO",
"service": "user_service",
"trace_id": "abc123xyz",
"span_id": "def456",
"user_id": "uuid",
"method": "POST",
"path": "/api/v1/users",
"status_code": 201,
"duration_ms": 125,
"message": "User created successfully",
"metadata": {
"department": "finance",
"roles": ["user"]
}
}
# Log levels and usage
- DEBUG: Detailed diagnostic information
- INFO: General informational messages
- WARNING: Warning messages for potential issues
- ERROR: Error events but application continues
- CRITICAL: Critical problems causing shutdown
9. Security Implementation
9.1 Security Layers
Defense in Depth Strategy
- Network Security:
- Azure Firewall with application rules
- Network Security Groups (NSGs) per subnet
- Private endpoints for database access
- DDoS Protection Standard
- Application Security:
- OWASP Top 10 mitigation
- Input validation and sanitization
- Output encoding
- SQL injection prevention via ORM
- Data Security:
- Encryption at rest (AES-256)
- Encryption in transit (TLS 1.3)
- Key management via Azure Key Vault
- Data masking for PII
9.2 Security Headers
# Security headers configuration
Content-Security-Policy: default-src 'self'; script-src 'self' 'unsafe-inline' https://cdn.azure.com; style-src 'self' 'unsafe-inline';
X-Content-Type-Options: nosniff
X-Frame-Options: DENY
X-XSS-Protection: 1; mode=block
Strict-Transport-Security: max-age=31536000; includeSubDomains; preload
Referrer-Policy: strict-origin-when-cross-origin
Permissions-Policy: geolocation=(), microphone=(), camera=()
10. Testing Strategy
10.1 Test Coverage Requirements
| Test Type | Coverage Target | Tools | Frequency |
|---|---|---|---|
| Unit Tests | > 80% | pytest, coverage.py | On every commit |
| Integration Tests | > 70% | pytest, testcontainers | On every PR |
| E2E Tests | Critical paths | Selenium, Cypress | Daily |
| Performance Tests | All endpoints | Locust, JMeter | Weekly |
| Security Tests | OWASP Top 10 | OWASP ZAP, Snyk | Sprint end |
10.2 Test Scenarios
Authentication Test Suite
def test_successful_login():
"""Test successful user login with valid credentials"""
response = client.post('/api/v1/auth/login', json={
'email': 'test@archwood.com',
'password': 'ValidPassword123!'
})
assert response.status_code == 200
assert 'access_token' in response.json()
assert 'refresh_token' in response.json()
def test_failed_login_invalid_password():
"""Test login failure with invalid password"""
response = client.post('/api/v1/auth/login', json={
'email': 'test@archwood.com',
'password': 'WrongPassword'
})
assert response.status_code == 401
assert response.json()['error'] == 'Invalid credentials'
def test_rate_limiting():
"""Test rate limiting after multiple failed attempts"""
for i in range(6):
response = client.post('/api/v1/auth/login', json={
'email': 'test@archwood.com',
'password': 'WrongPassword'
})
assert response.status_code == 429
assert 'Too many attempts' in response.json()['error']
11. Deployment Configuration
11.1 Kubernetes Deployment
apiVersion: apps/v1
kind: Deployment
metadata:
name: silvanus-api
namespace: production
spec:
replicas: 3
strategy:
type: RollingUpdate
rollingUpdate:
maxSurge: 1
maxUnavailable: 0
selector:
matchLabels:
app: silvanus-api
template:
metadata:
labels:
app: silvanus-api
version: v1.0.0
spec:
containers:
- name: silvanus-api
image: archwood.azurecr.io/silvanus-api:1.0.0
ports:
- containerPort: 8000
env:
- name: DJANGO_SETTINGS_MODULE
value: "config.settings.production"
- name: DATABASE_URL
valueFrom:
secretKeyRef:
name: silvanus-secrets
key: database-url
resources:
requests:
memory: "512Mi"
cpu: "500m"
limits:
memory: "1Gi"
cpu: "1000m"
livenessProbe:
httpGet:
path: /health
port: 8000
initialDelaySeconds: 30
periodSeconds: 10
readinessProbe:
httpGet:
path: /ready
port: 8000
initialDelaySeconds: 5
periodSeconds: 5
---
apiVersion: v1
kind: Service
metadata:
name: silvanus-api-service
namespace: production
spec:
selector:
app: silvanus-api
ports:
- protocol: TCP
port: 80
targetPort: 8000
type: LoadBalancer
11.2 CI/CD Pipeline
Deployment Stages
- Build Stage:
- Run unit tests
- Code quality checks (SonarQube)
- Security scanning (Snyk)
- Build Docker image
- Test Stage:
- Deploy to test environment
- Run integration tests
- Run E2E tests
- Performance baseline tests
- Staging Stage:
- Deploy to staging
- Smoke tests
- User acceptance testing
- Security penetration testing
- Production Stage:
- Blue-green deployment
- Canary release (10% → 50% → 100%)
- Health checks
- Rollback capability
12. Appendices
Appendix A: Error Codes
| Error Code | HTTP Status | Description | User Message |
|---|---|---|---|
| AUTH001 | 401 | Invalid credentials | The email or password you entered is incorrect |
| AUTH002 | 401 | Token expired | Your session has expired. Please log in again |
| AUTH003 | 403 | Insufficient permissions | You don't have permission to perform this action |
| VAL001 | 400 | Validation error | Please check your input and try again |
| SYS001 | 500 | Internal server error | Something went wrong. Please try again later |
| RATE001 | 429 | Rate limit exceeded | Too many requests. Please wait before trying again |
Appendix B: Database Indexes
-- Performance-critical indexes
CREATE INDEX idx_users_email ON users(email);
CREATE INDEX idx_users_department ON users(department_id);
CREATE INDEX idx_users_manager ON users(manager_id);
CREATE INDEX idx_users_active ON users(is_active) WHERE is_active = true;
CREATE INDEX idx_sessions_user ON auth_sessions(user_id);
CREATE INDEX idx_sessions_token ON auth_sessions(token_hash);
CREATE INDEX idx_sessions_expires ON auth_sessions(expires_at) WHERE revoked = false;
CREATE INDEX idx_audit_user_time ON audit_logs(user_id, created_at DESC);
CREATE INDEX idx_audit_resource ON audit_logs(resource_type, resource_id);
CREATE INDEX idx_workflows_status ON workflows(status) WHERE status IN ('PENDING', 'IN_PROGRESS');
CREATE INDEX idx_workflows_assignee ON workflows(assignee_id, status);
-- Composite indexes for common queries
CREATE INDEX idx_users_dept_active ON users(department_id, is_active);
CREATE INDEX idx_audit_user_action_time ON audit_logs(user_id, action, created_at DESC);
Appendix C: Environment Variables
# Required Environment Variables # Django Settings DJANGO_SETTINGS_MODULE=config.settings.production SECRET_KEY=DEBUG=False ALLOWED_HOSTS=silvanus.archwood.com,*.archwood.internal # Database DATABASE_URL=postgresql://user:password@host:5432/silvanus DATABASE_POOL_SIZE=20 DATABASE_MAX_OVERFLOW=5 # Redis REDIS_URL=redis://:password@redis-host:6379/0 REDIS_CACHE_URL=redis://:password@redis-host:6379/1 # Azure Services AZURE_STORAGE_ACCOUNT=archwoodstorage AZURE_STORAGE_KEY= AZURE_KEY_VAULT_URL=https://archwood-kv.vault.azure.net/ AZURE_AI_ENDPOINT=https://archwood.cognitiveservices.azure.com/ AZURE_AI_KEY= # Authentication JWT_SECRET_KEY= JWT_ALGORITHM=RS256 JWT_ACCESS_TOKEN_LIFETIME=3600 JWT_REFRESH_TOKEN_LIFETIME=604800 # Monitoring APPLICATION_INSIGHTS_KEY= LOG_LEVEL=INFO # Email EMAIL_HOST=smtp.office365.com EMAIL_PORT=587 EMAIL_USE_TLS=True EMAIL_HOST_USER=silvanus@archwood.com EMAIL_HOST_PASSWORD= # External APIs SLACK_WEBHOOK_URL=https://hooks.slack.com/services/xxx TEAMS_WEBHOOK_URL=https://outlook.office.com/webhook/xxx # Feature Flags ENABLE_MFA=True ENABLE_AI_AGENT=True ENABLE_ADVANCED_ANALYTICS=False
Appendix D: API Response Examples
Successful Response
HTTP/1.1 200 OK
Content-Type: application/json
X-Request-ID: req_abc123xyz
{
"status": "success",
"data": {
"id": "550e8400-e29b-41d4-a716-446655440000",
"email": "john.smith@archwood.com",
"full_name": "John Smith",
"department": {
"id": "660f8400-e29b-41d4-a716-446655440001",
"name": "Finance"
},
"roles": ["finance_user", "report_viewer"],
"permissions": [
"users.view",
"reports.view",
"reports.export"
],
"created_at": "2026-01-15T10:00:00Z",
"updated_at": "2026-01-15T14:30:00Z"
},
"meta": {
"timestamp": "2026-01-15T14:30:00Z",
"version": "1.0"
}
}
Error Response
HTTP/1.1 400 Bad Request
Content-Type: application/json
X-Request-ID: req_def456abc
{
"status": "error",
"error": {
"code": "VAL001",
"message": "Validation failed",
"details": [
{
"field": "email",
"message": "Email address is not valid"
},
{
"field": "department_id",
"message": "Department does not exist"
}
]
},
"meta": {
"timestamp": "2026-01-15T14:31:00Z",
"request_id": "req_def456abc",
"documentation": "https://docs.silvanus.archwood.com/errors/VAL001"
}
}
Paginated Response
HTTP/1.1 200 OK
Content-Type: application/json
X-Total-Count: 150
Link: </api/v1/users?page=2>; rel="next", </api/v1/users?page=5>; rel="last"
{
"status": "success",
"data": {
"items": [...],
"pagination": {
"page": 1,
"page_size": 50,
"total_pages": 5,
"total_items": 150,
"has_next": true,
"has_previous": false
}
},
"meta": {
"timestamp": "2026-01-15T14:32:00Z"
}
}
Appendix E: Performance Benchmarks
| Operation | Target | P50 | P95 | P99 |
|---|---|---|---|---|
| User Login | < 500ms | 200ms | 450ms | 800ms |
| Get User List (50 items) | < 200ms | 80ms | 150ms | 250ms |
| Create User | < 300ms | 120ms | 250ms | 400ms |
| Workflow Execution | < 1000ms | 400ms | 800ms | 1200ms |
| AI Agent Response | < 2000ms | 800ms | 1500ms | 2500ms |
| Report Generation | < 5000ms | 2000ms | 4000ms | 6000ms |
Appendix F: Disaster Recovery Procedures
Recovery Procedures by Component
1. Database Recovery
# Point-in-time recovery procedure
1. Stop application servers
kubectl scale deployment silvanus-api --replicas=0
2. Create new database from backup
az postgres flexible-server restore \
--resource-group silvanus-rg \
--name silvanus-db-restored \
--source-server silvanus-db \
--restore-time "2026-01-15T10:00:00Z"
3. Update connection strings
kubectl set env deployment/silvanus-api \
DATABASE_URL=postgresql://...@silvanus-db-restored...
4. Verify data integrity
python manage.py dbshell
SELECT COUNT(*) FROM users;
SELECT MAX(created_at) FROM audit_logs;
5. Restart application
kubectl scale deployment silvanus-api --replicas=3
6. Run health checks
curl https://silvanus.archwood.com/health
2. Application Recovery
# Rollback deployment procedure
1. Get deployment history
kubectl rollout history deployment/silvanus-api
2. Check previous revision
kubectl rollout history deployment/silvanus-api --revision=2
3. Rollback to previous version
kubectl rollout undo deployment/silvanus-api --to-revision=2
4. Monitor rollback status
kubectl rollout status deployment/silvanus-api
5. Verify application health
kubectl get pods -l app=silvanus-api
kubectl logs -l app=silvanus-api --tail=100
Appendix G: Monitoring Queries
// Azure Log Analytics KQL Queries
// API Response Time Analysis
requests
| where timestamp > ago(1h)
| where name startswith "POST /api/v1/"
| summarize
avg_duration = avg(duration),
p95_duration = percentile(duration, 95),
p99_duration = percentile(duration, 99),
count = count()
by bin(timestamp, 5m), name
| render timechart
// Error Rate by Endpoint
requests
| where timestamp > ago(24h)
| where resultCode >= 400
| summarize
error_count = count(),
error_rate = count() * 100.0 / toscalar(requests | where timestamp > ago(24h) | count())
by resultCode, name
| order by error_count desc
// User Activity Heatmap
customEvents
| where timestamp > ago(7d)
| where name == "UserAction"
| extend hour = hourofday(timestamp)
| extend day = dayofweek(timestamp)
| summarize actions = count() by day, hour
| render heatmap
// Database Query Performance
dependencies
| where timestamp > ago(1h)
| where type == "SQL"
| extend query_type = extract(@"^(\w+)", 1, data)
| summarize
avg_duration = avg(duration),
max_duration = max(duration),
count = count()
by query_type
| order by avg_duration desc
// AI Agent Performance
customMetrics
| where timestamp > ago(1h)
| where name == "SilvanusAgent.ResponseTime"
| summarize
avg_response = avg(value),
max_response = max(value),
requests = count()
by bin(timestamp, 5m)
| render timechart
Appendix H: Security Checklist
Pre-Deployment Security Checklist
| Category | Item | Status | Priority |
|---|---|---|---|
| Authentication | Strong password policy enforced | ☐ | HIGH |
| MFA enabled for admin accounts | ☐ | HIGH | |
| JWT token rotation implemented | ☐ | HIGH | |
| Session timeout configured | ☐ | MEDIUM | |
| Account lockout after failed attempts | ☐ | HIGH | |
| Data Protection | Database encryption at rest | ☐ | HIGH |
| TLS 1.3 for all connections | ☐ | HIGH | |
| PII data masking implemented | ☐ | HIGH | |
| Secrets stored in Key Vault | ☐ | HIGH | |
| Network Security | Firewall rules configured | ☐ | HIGH |
| Private endpoints enabled | ☐ | MEDIUM | |
| DDoS protection enabled | ☐ | MEDIUM | |
| Network segmentation implemented | ☐ | HIGH | |
| Monitoring | Security alerts configured | ☐ | HIGH |
| Audit logging enabled | ☐ | HIGH | |
| SIEM integration completed | ☐ | MEDIUM |
Appendix I: Capacity Planning
Resource Requirements by User Load
| Users | API Pods | Worker Pods | DB vCores | DB RAM (GB) | Redis RAM (GB) |
|---|---|---|---|---|---|
| 0-500 | 3 | 2 | 4 | 16 | 4 |
| 500-1000 | 5 | 3 | 8 | 32 | 8 |
| 1000-2500 | 10 | 5 | 16 | 64 | 16 |
| 2500-5000 | 20 | 10 | 32 | 128 | 32 |
| 5000+ | 30+ | 15+ | 64 | 256 | 64 |
Storage Growth Projections
# Storage calculation formula
Daily Data Growth = (Users × Actions/Day × Avg_Record_Size) + Audit_Logs + Files
# Assumptions:
- Average user: 50 actions/day
- Average record size: 2 KB
- Audit log per action: 1 KB
- Average file upload: 5 MB/user/month
# Monthly storage growth:
500 users: ~15 GB/month
1000 users: ~30 GB/month
2500 users: ~75 GB/month
5000 users: ~150 GB/month
# Recommended storage allocation:
Initial: 500 GB
Year 1: 1 TB
Year 2: 2 TB
Appendix J: Glossary of Technical Terms
| Term | Definition |
|---|---|
| API Gateway | Central entry point for all API requests, handling routing, authentication, and rate limiting |
| Blue-Green Deployment | Deployment strategy using two identical production environments for zero-downtime updates |
| Canary Release | Gradual rollout strategy where new version is deployed to a subset of users first |
| CORS | Cross-Origin Resource Sharing - mechanism allowing web apps to access resources from other domains |
| JWT | JSON Web Token - compact, URL-safe means of representing claims between parties |
| Microservices | Architectural pattern where application is built as collection of small, independent services |
| ORM | Object-Relational Mapping - technique for converting data between incompatible systems |
| RBAC | Role-Based Access Control - security paradigm for restricting system access based on roles |
| Redis | In-memory data structure store used as cache, message broker, and session store |
| REST | Representational State Transfer - architectural style for designing networked applications |
| Webhook | HTTP callback that occurs when something happens; a simple event-notification mechanism |